Data compression tutorial: Part 3
By Steven W. Smith, Ph.D.
JPEG
Many methods of lossy compression have been developed; however, a family of techniques called transform compression has proven the most valuable. The best example of transform compression is embodied in the popular JPEG standard of image encoding. JPEG is named after its origin, the Joint Photographers Experts Group. We will describe the operation of JPEG to illustrate how lossy compression works.
We have already discussed a simple method of lossy data compression, coarser sampling and/or quantization (CS&Q in Table 27-1). This involves reducing the number of bits per sample or entirely discard some of the samples. Both these procedures have the desired effect: the data file becomes smaller at the expense of signal quality. As you might expect, these simple methods do not work very well.
JPEG
Many methods of lossy compression have been developed; however, a family of techniques called transform compression has proven the most valuable. The best example of transform compression is embodied in the popular JPEG standard of image encoding. JPEG is named after its origin, the Joint Photographers Experts Group. We will describe the operation of JPEG to illustrate how lossy compression works.
We have already discussed a simple method of lossy data compression, coarser sampling and/or quantization (CS&Q in Table 27-1). This involves reducing the number of bits per sample or entirely discard some of the samples. Both these procedures have the desired effect: the data file becomes smaller at the expense of signal quality. As you might expect, these simple methods do not work very well.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Virtual prototyping boosts model-driven Design for Six Sigma methodology: Part 3 of 3 - Design example: Electronic throttle control
- Dealing with clock jitter in embedded DDR2/DDR3 DRAM designs: Part 3
- Providing memory system and compiler support for MPSoc designs: Compiler Support (Part 3)
- Power-aware FPGA design (Part 3)
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events