Virtual prototyping boosts model-driven Design for Six Sigma methodology: Part 3 of 3 - Design example: Electronic throttle control
By Darrell Teegarden, Mentor Graphics Corporation
Automotive DesignLine (04/24/08, 03:44:00 PM EDT)
Part 1 of this 3-part series described how a model-driven development process and virtual prototyping tools help address the challenges of implementing a DFSS methodology in a complex automotive electronics development process.
Part 2 details how a model-driven development process is integrated with a DFSS methodology to provide a more efficient way to ensure that customer critical-to-quality (CTQ) requirements are met in the final product.
Imagine all the variables that can affect the performance of your design—from part tolerances to process variations and environmental conditions. Testing a physical prototype for even a fraction of these factors can be expensive, time-consuming, and error-prone. However, you can significantly cut the costs of testing by simulating with virtual prototypes.
A model-driven Design for Six Sigma (DFSS) approach provides an effective structure for managing a complex development process while reducing costs through virtual prototyping. DFSS methodologies typically start by defining a project and then analyzing customer needs—producing a set of customer critical to quality (CTQ) specifications. Incorporating a model-driven development process into the DFSS methodology can help ensure that these CTQs are met in the final product.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- ASIC vendors heed call for virtual prototyping tools
- Why you need RTL virtual prototyping
- Silicon virtual prototyping eyed for FPGAs
- A SystemC based Virtual Prototyping Methodology for Embedded Systems
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems