Cryptography in software or hardware: It depends on the need
Yann Loisel, Maxim Integrated Products
EETimes (8/28/2011 2:21 PM EDT)
Cryptographic algorithms are high-performance, secure engines that require considerable space in a design. When countermeasures are added to thwart security attacks, the space and memory requirements grow even more demanding.
For these reasons, cryptographic algorithms have traditionally been embedded as proprietary designs (i.e., intellectual property, IP) in hardware on smart cards or 8-bit chips. With recent improvements in core design and frequency performance, designers are now asking whether the customized IP blocks are still needed for these secure algorithms.
In short, can a designer use a generic core in the hardware to save space and cost, and embed the cryptographic algorithms in software? The answer is simple…well, not so simple - it depends on the need.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Bridging software and hardware to accelerate SoC validation
- 10 software tips for hardware engineers
- An introduction to offloading CPUs to FPGAs - Hardware programming for software developers
- The Power of Developing Hardware and Software in Parallel
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions