Basics of multi-cycle & false paths
Nitin Singh, Neha Agarwal,Arjun Pal Chowdhury (Freescale Semiconductor)
EDN (August 07, 2014)
One of the significant challenges to RTL designers is to identify complete timing exceptions upfront. This becomes an iterative process in complicated designs where additional timing exceptions are identified based upon critical path or failing path analysis from timing reports. This approach leaves a significant number of timing paths which may not be real, but these never get identified, since they may not come up in the critical path report. However, synthesis and timing tools will continue to expend resources optimizing these paths when it is not needed. At the same time, it can also impact area and power consumption of the device.
The intent of this document is to provide examples of false and multi cycle path exceptions that are easily missed by even experienced designers, and are identified through iterations on timing reports.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Basics of SRAM PUF and how to deploy it for IoT security
- Assessing Design Space for the Device-Circuit Codesign of Nonvolatile Memory-Based Compute-in-Memory Accelerators
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions