Automatic shape-based routing to achieve parasitic constraint closure in custom design
Mark Williams, co-founder and CEO, Pulsic Ltd.
2/9/2011 10:43 AM EST
Abstract
Each smaller sub-micron process technology brings a new set of physical problems for IC designers. Among the toughest of these problems are meeting electrical parasitic constraints and minimizing signal integrity issues in the interconnect routing while still reaching routing completion, controlling power consumption, staying within the specified die-size and speeding time to market. For digital designs, some of these concerns are addressed by automatic place and route tools. However, for custom IC designs, these issues remain largely unaddressed due to the inadequacy of the automation tools. In addition to custom design tools and flows, there is a need for standardization of data, including design constraints, an effort which is starting to gain momentum at the industry level.
This paper details the increasing problem of achieving parasitic-constraint closure during interconnect routing and how a shape-based routing methodology can help to solve these problems automatically while completing the routing of the design.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Automatic Synthesis Tackles Power Tower
- Routing density analysis of ASICs, Structured ASICs, and FPGAs
- Design Constraint Verification and Validation: A New Paradigm
- Topology Planning and Routing
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions