Asynchronous reset synchronization and distribution - Special cases
Rostislav (Reuven) Dobkin, vSync Circuits LTD
embedded.com ( August 11, 2017)
Lack of coordination between asynchronous resets and synchronous logic clocks leads to intermittent failures on power up. In this series of articles, we discuss the requirements and challenges of asynchronous reset and explore advanced solutions for ASIC vs FPGA designs.
Asynchronous resets are traditionally employed in VLSI designs for bringing synchronous circuitry to a known state after power up. Asynchronous reset release operation must be coordinated with the synchronous logic clock signal to eliminate synchronization failures due to possible contention between the reset and the clock. A lack of such coordination leads to intermittent failures on power up. The problem exacerbates when large, multiple-clock domain designs are considered. In addition to the synchronization issues, the distribution of an asynchronous reset to millions of flip-flops is challenging, calling for techniques similar to CTS (Clock Tree Synthesis) and requiring similar area and routing resources.
The requirements and challenges of asynchronous reset are reviewed, focusing on synchronization and distribution issues. The drawbacks of classic solutions for reset synchronization (reset tree source synchronization) and distribution (reset tree synthesis) are discussed. Advanced solutions for faster and simpler timing convergence and more reliable reset synchronization and distribution are presented. Different approaches for ASIC versus FPGA designs are detailed.
Part 1 describes the issues surrounding asynchronous resets and outlines approaches for resolving those issues. Part 2 discusses additional solutions for correct asynchronous reset in ASIC and FPGA. Some useful special cases are discussed in Part 3 (this article).
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Asynchronous reset synchronization and distribution - challenges and solutions
- Asynchronous reset synchronization and distribution - ASICs and FPGAs
- eUSB2V2 with 4.8Gbps and Use Cases: A Comprehensive Overview
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events