Asynchronous reset synchronization and distribution - ASICs and FPGAs
Rostislav (Reuven) Dobkin, vSync Circuits LTD
embedded.com (August 04, 2017)
Lack of coordination between asynchronous resets and synchronous logic clocks leads to intermittent failures on power up. In this series of articles, we discuss the requirements and challenges of asynchronous reset and explore advanced solutions for ASIC vs FPGA designs.
Asynchronous resets are traditionally employed in VLSI designs for bringing synchronous circuitry to a known state after power up. Asynchronous reset release operation must be coordinated with the synchronous logic clock signal to eliminate synchronization failures due to possible contention between the reset and the clock. A lack of such coordination leads to intermittent failures on power up. The problem exacerbates when large, multiple-clock domain designs are considered. In addition to the synchronization issues, the distribution of an asynchronous reset to millions of flip-flops is challenging, calling for techniques similar to CTS (Clock Tree Synthesis) and requiring similar area and routing resources.
The requirements and challenges of asynchronous reset are reviewed, focusing on synchronization and distribution issues. The drawbacks of classic solutions for reset synchronization (reset tree source synchronization) and distribution (reset tree synthesis) are discussed. Advanced solutions for faster and simpler timing convergence and more reliable reset synchronization and distribution are presented. Different approaches for ASIC versus FPGA designs are detailed.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- Asynchronous reset synchronization and distribution - challenges and solutions
- Asynchronous reset synchronization and distribution - Special cases
- Resets in FPGA & ASIC control and data paths
- How to choose an RTOS for your FPGA and ASIC designs
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design