Asynchronous reset synchronization and distribution - ASICs and FPGAs
Rostislav (Reuven) Dobkin, vSync Circuits LTD
embedded.com (August 04, 2017)
Lack of coordination between asynchronous resets and synchronous logic clocks leads to intermittent failures on power up. In this series of articles, we discuss the requirements and challenges of asynchronous reset and explore advanced solutions for ASIC vs FPGA designs.
Asynchronous resets are traditionally employed in VLSI designs for bringing synchronous circuitry to a known state after power up. Asynchronous reset release operation must be coordinated with the synchronous logic clock signal to eliminate synchronization failures due to possible contention between the reset and the clock. A lack of such coordination leads to intermittent failures on power up. The problem exacerbates when large, multiple-clock domain designs are considered. In addition to the synchronization issues, the distribution of an asynchronous reset to millions of flip-flops is challenging, calling for techniques similar to CTS (Clock Tree Synthesis) and requiring similar area and routing resources.
The requirements and challenges of asynchronous reset are reviewed, focusing on synchronization and distribution issues. The drawbacks of classic solutions for reset synchronization (reset tree source synchronization) and distribution (reset tree synthesis) are discussed. Advanced solutions for faster and simpler timing convergence and more reliable reset synchronization and distribution are presented. Different approaches for ASIC versus FPGA designs are detailed.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Asynchronous reset synchronization and distribution - challenges and solutions
- Asynchronous reset synchronization and distribution - Special cases
- Resets in FPGA & ASIC control and data paths
- How to choose an RTOS for your FPGA and ASIC designs
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions