Assertion-based verification in mixed-signal design
Prabal Bhattacharya and Don O'Riordan
10/17/2011 12:01 PM EDT
Introduction
Assertion-based verification (ABV) is a powerful verification approach that has been proven to help digital IC architects, designers, and verification engineers improve design quality and reduce time to market. But ABV has rarely been applied to analog/mixed-signal verification. This article looks at challenges in analog/mixed-signal verification, evaluates how the ABV concept can address some of those challenges, and shows how languages such as Property Specification Language (PSL) and SystemVerilog Assertions (SVA) can be used to write complex analog/mixed-signal assertions.
Assertions, by definition, capture the intended behavior of a design. In verification terminology, ABV can be positioned both as a white-box and a black-box approach in that the user can create properties (or asserted behaviors) that can monitor the design deep within the hierarchy, reaching the internals of the design blocks as well as the interfaces of the design blocks.
Assertions are written both during development of the design and the verification environment. Both designers and verification engineers can consequently be involved in identifying requirements and capturing them as assertions.
So where do mixed-signal assertions fit in?
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Implementing Parallel Processing and Fine Control in Design Verification
- Design patterns in SystemVerilog OOP for UVM verification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Formal-based methodology cuts digital design IP verification time
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions