Reaping the benefits of architectural modeling in embedded design
Juha-Pekka Tolvanen and Janne Luoma, Metacase and De-Jiu Chen, KTH
Software-enabled features in automotive and other embedded systems continue to grow in size and complexity. This growth calls for corresponding improvements in development approaches and tools if we are to ensure cost and time efficiency throughout the entire lifecycle. Notable bottlenecks include the integration of different subsystems and the consolidation of various engineering aspects, where tool support is becoming ever more important.
Integrating high-level development information across tools is only possible with a model-based approach to system development and quality management. For architecture models of embedded software systems, such an approach not only captures the software functionality, but also its corresponding engineering concerns, such as requirements, resource deployment, timing and safety, variability, etc.
The focus is raised from the implementation details of individual features to the design of the entire system as an integrated whole. By formalizing architectural artifacts and clarifying the formalisms used, a model-based approach also makes it possible to ensure the consistency and completeness of system descriptions, offer early predictions about system behaviors and properties, and enable formal design space exploration and optimization.
In this article we present our experiences on how companies can ease the transition to model-based architecture design and begin reaping its benefits. We take automotive E&E (Electric & Electronic) systems as an example here, but the principles and tool support are not limited to the automotive domain.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Emerging Trends and Challenges in Embedded System Design
- EDA in the Cloud Will be Key to Rapid Innovative SoC Design
- Securing UART communication interface in embedded IoT devices
- Low Power Design in SoC Using Arm IP
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events