API-based verification: Effective reuse of verification environment components
Bipin Patel & Manzil Shah (eInfochips)
EDN -February 22, 2017
Verification using various methodologies has become popular as it saves VE development time. Even more time can be saved if we think of possible reuse of various VE components when defining the VE architecture. The reuse of VE components at different levels is crucial to time-saving during design verification, with applications comprising block, cluster/subsystem, chip, or SoC levels, and can also result in huge time savings during post-silicon lab validation.
This paper talks about an API- (Application Program Interface) based verification approach that can be adopted for a whole segment of ASIC applications.
Let’s focus on design blocks B1, B2, and B3 of the example SoC in Figure 1. These blocks are interconnected using unique interfaces and each one of them is to be verified independently at the block level followed by cluster and chip levels.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Verification challenges of ADC subsystem integration within an SoC
- Can Hardware-Assisted Verification Save SoC Realization Time?
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- Mixed Signal Design & Verification Methodology for Complex SoCs
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems