API-based verification: Effective reuse of verification environment components
Bipin Patel & Manzil Shah (eInfochips)
EDN -February 22, 2017
Verification using various methodologies has become popular as it saves VE development time. Even more time can be saved if we think of possible reuse of various VE components when defining the VE architecture. The reuse of VE components at different levels is crucial to time-saving during design verification, with applications comprising block, cluster/subsystem, chip, or SoC levels, and can also result in huge time savings during post-silicon lab validation.
This paper talks about an API- (Application Program Interface) based verification approach that can be adopted for a whole segment of ASIC applications.
Let’s focus on design blocks B1, B2, and B3 of the example SoC in Figure 1. These blocks are interconnected using unique interfaces and each one of them is to be verified independently at the block level followed by cluster and chip levels.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Verification challenges of ADC subsystem integration within an SoC
- Can Hardware-Assisted Verification Save SoC Realization Time?
- Formal, simulation, and AMBA verification IP combine to verify configurable powerline networking SoC
- Mixed Signal Design & Verification Methodology for Complex SoCs
Latest White Papers
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems