Understanding Android's strengths and weaknesses
Juan Gonzales, Darren Etheridge, and Niclas Anderberg, Texas Instruments
EETimes (9/29/2011 9:09 AM EDT)
Here are techniques for exploiting Android's strengths and managing its limitations, especially in hard real-time, mission-critical systems.
The details surrounding the meteroic rise of Android in the smartphone market are well documented. However, another revolution is taking place in other applications where Android provides distinct advantages over a "standard" Linux distribution. Android provides a tightly coupled environment for application development where the frameworks and middleware components are selected by Google. Traditional Linux distributions are typically "mix and match" (for example, some people prefer X11/KDE rather than Qt/embedded for graphics development), which burdens the software designer with the need to invest time in understanding the very complex options and make difficult choices that typically have an impact through the product's lifecycle.
For these and other reasons, many refer to Android as "Linux made easy." Today, even Windows Compact Embedded (WinCE) developers who once shied away from Linux due to its complexity are taking a second look at well-integrated Android solutions. Add into the mix a platform licensing approach free from "copy-left" burdens, also known as a method for making a program free, along with a cost you cannot beat (free), and you have Android's recipe for success.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Semiconductor industry strengths and weaknesses in the Asia Pacific region
- Optimize drive strengths to reduce power problems
- Android, Linux and Real-Time Development for Embedded Systems
- Android hardware-software design using virtual prototypes - Part 2: Building a sensor subsystem
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events