Android hardware-software design using virtual prototypes - Part 2: Building a sensor subsystem
Achim Nohl, Synopsys
Embedded.com, November 7, 2012
Editor’s Note: In the second of a three-part series of articles on virtual prototyping, Achim Nohl explains how to use the Synopsys Virtualizer Development Kit (VDK) and describes the hardware/software integration flow for a sensor subsystem for use in an Android mobile device. For the remainder of this series, we will illustrate virtual prototyping usage and early software development by means of a brief case study. The case study is centered on a multi-function sensor controller subsystem which supports an accelerometer, magnetic field, orientation, gyroscope, light, pressure, temperature, and proximity.
The subsystem embeds an ARM Cortex- M3 microcontroller along with generic peripherals such as an interrupt controller, memories, GPIOs, and I2C. The sensor subsystem runs dedicated firmware to proxy the requested sensor data into a shared memory mailbox for communication with the main CPU. The main CPU, an ARM Cortex-A series CPU, runs Linux and Android.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- NavIC LDPC Decoder
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
Related White Papers
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core
- A Survey on the Design, Detection, and Prevention of Pre-Silicon Hardware Trojans
- Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors
- Get More Reliable Automotive ICs with a Shift Left Design Approach
Latest White Papers
- ReGate: Enabling Power Gating in Neural Processing Units
- Morphlux: Programmable chip-to-chip photonic fabrics in multi-accelerator servers for ML
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks