7 myths of analog and mixed-signal ASIC design
Bob Frostholm, JVD Inc.
EETimes (1/27/2011 5:13 PM EST)
Application specific integrated circuits (ASICs) typically conjure up the notion of massively complex logic chips containing tens or hundreds of thousands (even millions) of transistors configured to solve a customer’s unique set of problems. Unlike multi-function standard product ICs such as a micro-controller that can find its way into a wide variety of applications, ASICs are designed for one specific application and generally for one specific product or product family.To better understand the role and applicability of ASICs, it is important to briefly review their historical origins.
The first integrated circuits from the early ‘60s contained just a few transistors and performed simple digital logic functions such as "and", "or", "nor", etc. These were called SSI devices, meaning small-scale integration. As photolithography techniques improved, more and more transistors could be built on a single sliver of silicon. Soon, chip companies were developing medium scale integration (MSI) functions like flip-flops, buffers, latches, etc (10-100 transistors). Large-scale integration or LSI (100-1,000 transistors) and eventually VLSI (up to 100,000 transistors) ICs followed, providing lower system costs and higher levels of performance. Today, of course, we have digital chips in excess of a billion transistors thanks to advanced sub-micron lithography and the low voltage, high speed processes upon which they are built.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Simplifying analog and mixed-signal design integration
- Advanced Topics in FinFET Back-End Layout, Analog Techniques, and Design Tools
- Analog and Mixed-Signal Connectivity IP at 65nm and below
- Verification of a single-chip Analog TV and Digital TV ASIC
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension