Advanced Topics in FinFET Back-End Layout, Analog Techniques, and Design Tools
By AsicNorth
In our last post, we looked at the basics of finFET technology and how its increased complexity and constraints influence layout design choices. In this post, we’ll look at more advanced technology topics and key design tools that enhance layout productivity. We’ll also explore what might be next for integrated circuit (IC) mask layout design.
Multi-Patterning
The metal layers at the bottom of the stack, closest to the devices, must be on-pitch or very close to both the fin and poly pitch. This means the metal pitches for these layers should be among the finest geometries the process can support. Modern technologies achieve this with a multi-patterning technique known as self-aligned double patterning. More complex approaches requiring triple- or quad patterning are also practiced.
Double patterning requires shapes in the first few layers of the metal stack to be “colored,“ with the different colored shapes on a given layer being masked and deposited at different steps in the process. The coloring can be done algorithmically after the design is complete, but most often in custom IC layout, the coloring is done manually to maximize density and optimize electrical characteristics.
For example, the minimum pitch of Metal1 ColorA might be 50 nanometers (nm). Alternating Metal1 ColorA with Metal1 ColorB might allow a pitch of 25 nm, effectively doubling the metal density and current–carrying capability.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- AI, and the Real Capacity Crisis in Chip Design
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models