AI-driven SRAM demand needs integrated repair and security
By Meng-Yi Wu, eMemory
embedded.com (July 15, 2024)
Increasing popularity of AI applications and DPU architecture has led to growing demand for higher SRAM densities, in turn placing challenges on SRAM yield and reliability.
Along with the rise of the internet of things (IoT), mobile devices, and edge computing, the boom in AI-enhanced features has enabled the addition of even greater functionality in applications such as intelligent sensing, in-vehicle driver assistance (ADAS), and voice recognition, all of which require the use of increasingly larger training models.
However, as the progress of CPU performance slows, new ideas to reduce the I/O and data loading on CPUs are becoming more popular. These include such solutions as DPU or PIM (process in memory) architectures, as well as the introduction of hierarchical data processing. However, as more CPUs are required for hierarchical processing, there is a corresponding need for more SRAM caches to serve these high-speed CPUs. Thus, the increasing popularity of AI applications and DPU architecture implementations has led to growing demand for higher SRAM densities
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Secure Your Security Key in On-Chip SRAM: Techniques to avoid Data Remanance Attacks
- Security in transit
- Security needs more than checklist compliance
- Basics of SRAM PUF and how to deploy it for IoT security
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor