Security in transit
Ben Smith, Maxim Integrated
embedded.com (October 06, 2014)
There is one way to absolutely, positively guarantee that someone will receive a message intact, unadulterated, authenticated, and observed by no unauthorized party. Just copy the message to a physical medium, lock it in a sturdy briefcase, handcuff the briefcase to your own wrist, and board a plane. Best of luck at the security gate.
When you arrive at your destination, remove the briefcase from your wrist, unlock it, and present the message to your intended recipient. You can be assured that nobody else has seen it. Your recipient can be assured that the message is authentic. While you are there, find a comfortable meeting room and discuss the contents of the message, the weather, Italian restaurants—whatever you like. You have a little time before your flight home.
Use any other method for transmitting a message, and your message is at risk. Someone may intercept it and discover its contents. Or intercept your message and substitute it with one of their own. Or, intercept your message and block its transmission.
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
Related White Papers
- AES 256 algorithm towards Data Security in Edge Computing Environment
- How to achieve better IoT security in Wi-Fi modules
- Mathematical Certainty in Data Security
- The Growing Imperative Of Hardware Security Assurance In IP And SoC Design
Latest White Papers
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems