Security in transit
Ben Smith, Maxim Integrated
embedded.com (October 06, 2014)
There is one way to absolutely, positively guarantee that someone will receive a message intact, unadulterated, authenticated, and observed by no unauthorized party. Just copy the message to a physical medium, lock it in a sturdy briefcase, handcuff the briefcase to your own wrist, and board a plane. Best of luck at the security gate.
When you arrive at your destination, remove the briefcase from your wrist, unlock it, and present the message to your intended recipient. You can be assured that nobody else has seen it. Your recipient can be assured that the message is authentic. While you are there, find a comfortable meeting room and discuss the contents of the message, the weather, Italian restaurants—whatever you like. You have a little time before your flight home.
Use any other method for transmitting a message, and your message is at risk. Someone may intercept it and discover its contents. Or intercept your message and substitute it with one of their own. Or, intercept your message and block its transmission.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Improving performance and security in IoT wearables
- AES 256 algorithm towards Data Security in Edge Computing Environment
- How to achieve better IoT security in Wi-Fi modules
- Mathematical Certainty in Data Security
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems