Agile Design for Hardware, Part I
David Patterson and Borivoje Nikolic, UC Berkeley
7/27/2015 07:00 AM EDT
In the first of a three-part series, two Berkeley professors suggest its time to apply Agile design techniques to hardware.
Software used to be developed as a sequence of distinct phases, each of which can take six or more months:
- Requirements analysis and specification
- Architectural design
- Implementation and integration
- Verification and test
- Operation and maintenance
This process is the called the Waterfall development model, since it flows from the top down to completion. Waterfall relies on extensive documentation, planning, and using PERT and Gantt charts to try to make the schedule match the budget.
So many software projects were late, over budget, or abandoned that it led to a revolution in software development, demarcated by the Agile Manifesto in 2001. Agile development embraces change as a fact of life; small teams continuously refine a working but incomplete prototype until the customer is happy with the result. What to do in the next iteration depends on the evaluation of the current one, as opposed to some master plan established at the beginning of the project. Thus, the elaborate planning and documentation of the Waterfall process is moot.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Agile Design for Hardware, Part II
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- Shift Left for More Efficient Block Design and Chip Integration
- Simplifying analog and mixed-signal design integration
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension