Who's managing your power management?
Bob Frostholm, JVD Inc.
EETimes (2/4/2013 3:26 PM EST)
Today’s complex systems employ a wide variety of semiconductor technologies. From the deepest sub-nanometer processors to the analog I/O, it’s easy to see the need for power management devices for multiple voltages – 1.0V, 1.2V, 1.5V, 1.8V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V and more – all in the same box.
Dozens of companies offer thousands of chips to address these needs. Data sheets, PDKs and application notes make implementation easier than ever. If your volume is high enough, chip company application engineers are more than willing to do the design work for you. Sit back, watch YouTube, follow friends on Facebook and wait for the circuit to arrive by email. It’s not quite that simple, but let’s be honest, there are a lot of free resources out there to assist.
A few dozen years ago, engineers fresh out of school were assigned to the power supply team; the most boring and least challenging aspect of the system and the one most forgiving of inexperience. Could it come to that again?
Not likely. But you really should ask yourself, who is really managing your power management. Is it you or your suppliers? Who really understands your power management needs and more importantly, the solution you’ve implemented? Is your 7Amp 1.2V solution overkill for your 2.9Amp requirement? Could a lower cost LDO be used instead of that switcher?
To read the full article, click here
Related Semiconductor IP
- Power Management IC - I3C Basic Interface IP
- Power Management Subsystem
- Power Management Unit
- Power Management Unit
- Power Management Unit (2.3 - 3.0V output voltage, load current 150mA)
Related White Papers
- Calibrate and Configure your Power Management IC with NVM IP
- How productive is your R&D organization?
- Beat power management challenges in advanced LTE smartphones
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity