SoC low-power verification requires a full-chip solution
Thomas L. Anderson Vice President of Marketing Breker Verification Systems, Inc.
EETimes (4/13/2012 11:20 AM EDT)
Not too long ago, low-power design was an esoteric discipline practiced mostly by makers of digital watches and calculators. In the last 20 years, a steady series of new products that run on batteries for much of their lives has brought the need for power conservation to the forefront of the electronics business. Cell phones, smart phones, tablets, and other consumer devices have sophisticated, power-hungry processors and wireless links. Further, “green” laws and industry initiatives have mandated lower power even for “big iron” servers, switches, and telephony equipment.
At the heart of all these products are system-on-chip (SoC) designs combining one or more embedded processors with a variety of functional units, all interconnected by some type of bus or fabric. There is a wide range of techniques used to reduce the power consumed by these SoCs, including innovative transistor and cell designs, substrate biasing, and varying voltages. These have no significant effect on verification of the system model or the RTL design. However, the technique that has the highest impact on verification is perhaps the most widely used: power shut off (PSO). Shutting off functional units not currently needed clearly saves both leakage current and dynamic power.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- CPF Based Verification of an SoC - Lessons Learnt
- An Effective way to drastically reduce bug fixing time in SoC Verification
- Reduce SoC verification time through reuse in pre-silicon validation
- Simplifying SoC Verification by communicating between HVL Env and processor
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard