Practical Power Network Synthesis For Power-Gating Designs
(06/05/2007 3:00 AM EDT), EE Times
Although methodologies for power network synthesis typically assume that design tools can freely size sleep transistors for power gating, this assumption does not hold up for real-world SoC designs where the sleep transistors are commonly designed as custom switch cells of fixed sizes. The method described in this article avoids this unrealistic assumption and introduces the concept of a "fake via" to enable power network synthesis using existing EDA tools.
This method simultaneously optimizes the number and positions of sleep transistors and the power network's grids and wires for minimum area, maximum routeability with a given IR-drop target. With this automated method for synthesizing the power network, you can more easily take advantage of power gating to reduce leakage power consumption dramatically in SoCs.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Context Based Clock Gating Technique For Low Power Designs of IoT Applications - A DesignWare IP Case Study
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- A modeling approach for power integrity simulation in 3D-IC designs
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU