A modeling approach for power integrity simulation in 3D-IC designs
Vinayakam Subramanian (Apache Design, Inc.) and Jairam Sukumar (Texas Instruments)
4/27/2012 10:10 AM EDT
Designing reliable three-dimensional (3D) system-on-chips (SoCs) is extremely complex, and critical for the next level of integration in silicon design. In 3D integrated circuit (3D-IC) vertical stacked-die architecture, individual die are connected directly by Through-Silicon-Vias (TSVs) and micro-bumps. Simulation of 3D-ICs for power integrity needs to model the 3D structure, including all the ICs and their TSV interconnects. Some challenges include modeling and integrating third-party application SoCs or memories into the current design framework and performing a complete analysis. This article outlines an approach for concurrent analysis of the 3D-IC power grid, as well as a chip model-based analysis, and how analysis based on a chip macro-model can yield the same results as concurrent full-chip analysis, resulting in significant runtime benefits.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Analog and Power Management Trends in ASIC and SoC Designs
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity