Power Aware Verification of ARM-Based Designs
Ping Yeung and Erich Marschner, Mentor Graphics
11/4/2010 12:49 PM EDT
Power dissipation has become a key constraint for the design of today’s complex chips. Minimizing power dissipation is essential for battery-powered portable devices, as well as for reducing cooling requirements for non-portable systems. Such minimization requires active power management built into a device.
In a System-on-Chip (SoC) design with active power management, various subsystems can be independently powered up or down, and/or powered at different voltage levels. It is important to verify that the SoC works correctly under active power management.
When a given subsystem is turned off, its state will be lost, unless some or all of the state is explicitly retained during power down. When that subsystem is powered up again, it must either be reset, or it must restore its previous state from the retained state, or some combination thereof. When a subsystem is powered down, it must not interfere with the normal operation of the rest of the SoC.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Low Power Analysis and Verification of Super Speed Inter-Chip (SSIC) IP
- Challenges and Benefits of Low Power Design Verification with CPF for a standalone IP
- Robust Low power Architecture verification Strategy
- Integrated Low Power Verification Suite: The way forward for SoC use-case Verification
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity