Latches and timing closure: a mixed bag
Ashish Goel & Ateet Mishra, Freescale Semiconductor
EETimes (8/2/2011 3:29 PM EDT)
Introduction
Digital blocks contain combinational and sequential circuits. Sequential circuits are the storage cells with outputs that reflect the past sequence of their input values, while output of the combinational circuits depends only on the present input. Latches and flip flops are the commonly used storage elements.
This paper is divided into 4 parts. First part of the paper will discuss the advantages and disadvantages of latches compare to Flip-Flop. Next part describes some unique properties of latches that make them useful in high-frequency design. Third part of the paper will talk about the timing analysis complexities for latch-based design and how to deal with this complexity during the course of design. Finally, the paper will discuss challenges with latch-based design to hierarchical timing closure and partitioning, and some solutions.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- FPGA prototyping of complex SoCs: Partitioning and Timing Closure Challenges with Solutions
- Timing Closure on FPGAs
- Deriving design margins for successful timing closure
- Design Rule Violation fixing in timing closure
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference