Timing Closure on FPGAs
Sleep peacefully at night knowing that your design is in tip-top shape
By Nelson Lau, Spirent Communications
pldesignline.com (April 22, 2010)
Have you ever written code that behaves correctly under a simulator only to have intermittent failures in the field? Or maybe your code no longer functions properly when you compile with a newer version of your tool chain. You review your test bench and verify 100 percent complete test coverage and that all tests have passed with no errors--yet the problem stubbornly remains.
While designers understandably place great emphasis on coding and simulation, they often have only a nodding acquaintance with the internal workings of the silicon within an FPGA. As a result, incorrect logic synthesis and timing problems, rather than logic errors, are the cause of most logic failures.
But writing FPGA code that creates predictable, reliable logic is simple if designers take the right steps.
In FPGA design, logic synthesis and related timing closure occur during compilation. And many things, including I/O cell structure, asynchronous logic and timing constraints, can have a big impact on the compilation process, varying results with each pass through the tool chain. Let's take a closer look at ways to eliminate these variances to better and more quickly achieve timing closure.
To read the full article, click here
Related Semiconductor IP
- Xtal Oscillator on TSMC CLN7FF
- Wide Range Programmable Integer PLL on UMC L65LL
- Wide Range Programmable Integer PLL on UMC L130EHS
- Wide Range Programmable Integer PLL on TSMC CLN90G-GT-LP
- Wide Range Programmable Integer PLL on TSMC CLN80GC
Related White Papers
- FPGA prototyping of complex SoCs: Partitioning and Timing Closure Challenges with Solutions
- Latches and timing closure: a mixed bag
- Deriving design margins for successful timing closure
- Design Rule Violation fixing in timing closure