Deriving design margins for successful timing closure
Ateet Mishra, Amol Agarwal, and Abhishek Mahajan (Freescale)
EDN (August 13, 2013)
With the fast developing technology, the complexity of design is increasing day by day. To meet lower technology challenges and to achieve good silicon yield, SOC design flows have been enhanced and have introduced more number of design implementations steps. With every implementation step which takes design towards realistic working silicon, SOC design timing performance degrades due to various factors which were not apparent at previous implementation step. Thus it is very important to have a right estimate of design frequency since first stage of design implementation. The important parameter which makes it possible are called Design Margins.
Design margins
Design Margins are the extra pessimism introduced in terms of design uncertainty which covers the expected timing hit of every stage in implementation cycle so as to achieve targeted frequencies well in time. It is very much required to have a right estimate of design margins.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Optimizing Floorplan for STA and Timing improvement in VLSI Design Flow
- FPGA prototyping of complex SoCs: Partitioning and Timing Closure Challenges with Solutions
- Timing Closure on FPGAs
- Latches and timing closure: a mixed bag
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference