How to architect, design, implement, and verify low-power digital integrated circuits
January 29, 2007 -- edadesignline.com
In recent years, power consumption has moved to the forefront of digital integrated circuit (IC) development concerns. The combination of higher clock speeds, greater functional integration, and smaller process geometries has contributed to significant growth in power density. Furthermore, with every new process generation, leakage power consumption increases at an exponential rate.
It is common to think of low-power designs only in the context of handheld, battery-powered devices such as personal digital assistants (PDAs) and cell phones. And it is certainly fair to say that this class of device is at the top of low-power development concerns. In reality, however, power consumption (and corresponding heat generation) is also of significant interest to semiconductor segments with fixed installations, such as networking, set-top boxes, and computing devices. For example, the InformationWeek "Power Surge" article on 27 February 2006 reported that data center electricity costs are now in the range of US$3.3 billion annually, and it can cost more to cool a data center than it does to lease the floor space in which to house it. Additionally, consumers increasingly demand quieter devices for their living rooms and desktops, and low-power designs help manufacturers eliminate noisy cooling fans from set-top boxes and other products.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- BCD Technology: A Unified Approach to Analog, Digital, and Power Design
- How to Elevate RRAM and MRAM Design Experience to the Next Level
- How to Design Secure SoCs: Essential Security Features for Digital Designers
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity