How flash-based FPGAs simplify functional safety requirements
Ted Marena, Microsemi
embedded.com (June 19, 2018)
As the quantity of industrial equipment controlled by electronics grows, so do concerns over the equipment failing and causing personal harm and property damage. Safety functions are built into equipment to prevent functional failure and ensure that if a system does fail, it fails in a nonharmful way. Examples of safety systems in industrial equipment include train breaks, sensors monitoring hazards to air quality or the physical environment, assembly line assistance robots, and distributed control in process automation equipment, just to name a few. These systems often include field programmable gate arrays (FPGAs) that, when supported by safety data packages for calculating failure rates, can play a pivotal role in streamlining safety assessments. When these devices are also flash-based and therefore immune to single event upsets (SEUs), FPGAs enable safety system developers to dramatically simplify their designs.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related White Papers
- FPGAs & Functional Safety in Industrial Applications
- How NoCs ace power management and functional safety in SoCs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- How to use FPGAs to develop an intelligent solar tracking system