How flash-based FPGAs simplify functional safety requirements
Ted Marena, Microsemi
embedded.com (June 19, 2018)
As the quantity of industrial equipment controlled by electronics grows, so do concerns over the equipment failing and causing personal harm and property damage. Safety functions are built into equipment to prevent functional failure and ensure that if a system does fail, it fails in a nonharmful way. Examples of safety systems in industrial equipment include train breaks, sensors monitoring hazards to air quality or the physical environment, assembly line assistance robots, and distributed control in process automation equipment, just to name a few. These systems often include field programmable gate arrays (FPGAs) that, when supported by safety data packages for calculating failure rates, can play a pivotal role in streamlining safety assessments. When these devices are also flash-based and therefore immune to single event upsets (SEUs), FPGAs enable safety system developers to dramatically simplify their designs.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- FPGAs & Functional Safety in Industrial Applications
- How NoCs ace power management and functional safety in SoCs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- How to simplify power design development and evaluation for FPGA-based systems
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor