How NoCs ace power management and functional safety in SoCs
By Benoit de Lescure, Arteris IP (September 15, 2021)
The previous blog explained why network-on-chip (NoC) technology is displacing crossbar switch architectures at scale. This is especially obvious in very large system-on-chips (SoCs), the kind seen in data centers, artificial intelligence (AI) training accelerators and wireless communication infrastructure. But it’s also becoming important in smaller technologies: Internet of Things (IoT), wearables, and sensors at the “edge.” These devices retain many of the same complexities as their bigger cousins, but in a smaller footprint with low power and functional safety demands.
Power management demands
In a car, power usage may not be considered an important factor, but this may change as power-hungry smart electronics devices play a bigger role than ever in modern automobiles. Infotainment, sensors and sensor fusion, cameras, and radars are a case in point. Next, local AI provides a fast response for early collision detection while automotive Ethernet connects everything into a central processor—all burning significant power, which can drain a battery or reduce the range of an electric vehicle. Even when the driver turns off the car and walks away, some features must stay on at low standby power; for example, proximity detection automatically unlocks doors or receives a signal from an app to start the engine remotely.
Outside of the vehicle realm, some IoT devices are expected to run for 10 years on a coin cell battery. A drone that may run on a larger battery needs a great deal of power to remain in the air. Streaming high-resolution video consumes significant amounts of energy and therefore needs to be shut off when not needed. All these examples demand design for low power. This takes the form of application-specific power management, ranging from dynamic voltage and frequency scaling (DVFS), switching within a domain to completely shutting down domains on demand. In the key-off and walk-away case for the car, it means turning off everything except for an always-on domain for watching and processing remote events of interest.
Is knowing standard power tricks enough?
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- NoC Interconnect Fabric IP Improves SoC Power, Performance and Area
- Power Management for Internet of Things (IoT) System on a Chip (SoC) Development
- New Power Management IP Solution Can Dramatically Increase SoC Energy Efficiency
- Analog and Power Management Trends in ASIC and SoC Designs
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience