FPGAs & Functional Safety in Industrial Applications
Joe Mallett, Synopsys
EETimes (10/14/2015 01:45 PM EDT)
The integration of FPGAs into applications found on the factory floor is increasing due to their long lifetimes, high processing bandwidth, and flexibility to integrate many IP technologies.
The increasing adoption of automation on the factory floor is a key driver for more processing bandwidth, integration of industrial-specific communications, and functional safety. The integration of FPGA devices into applications found on the factory floor, like programmable logic controllers (PLCs), industrial networking switches, and motor controllers is increasing due to their long lifetimes, high processing bandwidth, and flexibility to integrate many IP technologies. Due to the increasing adoption of automation technologies enabled by FPGA devices, which translates to greater interaction between people and machines, there is a need to integrate functional safety into FPGA-based products. To facilitate building functionally safe designs, robust synthesis tools that support defined methods are needed. One such tool is Synplify Premier, which provides FPGA designers with technologies that enable functional safety capabilities into their products.
To read the full article, click here
Related Semiconductor IP
- ORAN IP core
- MIPI D-PHY RX+ (Receiver) IP
- MIPI D-PHY TX+ (Transmitter)
- LVDS Deserializer IP
- LVDS Serializer IP
Related White Papers
- FPGA-Based Functional Safety for Industrial Applications
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- Using FPGAs to solve challenges in industrial applications
Latest White Papers
- DisplayPort 2025: Navigating the Next Wave of Display Innovation
- Efficient Magnetization Switching via Orbital-to-Spin Conversion in Cr/W-Based Heterostructures
- Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
- Benchmarking Ultra-Low-Power 𝜇NPUs
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency