Automotive Architectures: Domain, Zonal and the Rise of Central
By Thierry Kouthon, Rambus
EETimes (February 16, 2022)
Electronics first appeared in cars in 1968 when Volkswagen installed an electronic control unit (ECU) in the VW 1600 sedan’s engine to help control fuel injection. Today, automotive electronics are ubiquitous, controlling or assisting with every aspect of the vehicle’s operation and performance. Electronics now account for over 40 percent of a new vehicle’s total cost, having grown from just 18 percent in 2000, according to Deloitte.
Integration of computing technology into every aspect of the car has transformed how automotive OEMs approach design, engineering and manufacturing. Up until the past decade, vehicle electronics used a flat architecture where embedded ECUs operated together in a limited way. The advancement toward connected cars and AVs led to a divergence in how carmakers approached the communication architecture of a vehicle’s electronics.
Concurrently, the introduction of sensors into the vehicle architecture further accelerated the need for greater computing power to process and analyze the resulting data. These new aspects of the vehicle’s brain led to differing design philosophies toward designing modern vehicles, from the domain architecture to newer zonal and central architectures.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- The Rise of RISC-V and ISO 26262 Compliance
- Colibri, the codec for perfect quality and fast distribution of professional AV over IP
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Capitalizing on the Architectural Flexibility of FPGAs with RISC-V and a Simplified Programming Flow
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference