Toshiba, Sony unveil 65-nm embedded memory process
Toshiba, Sony unveil 65-nm embedded memory process
By Mark LaPedus, Semiconductor Business News
December 5, 2002 (1:00 p.m. EST)
URL: http://www.eetimes.com/story/OEG20021202S0091
TOKYO--Enabling the shift towards “ubiquitous computing,” Japan's Toshiba Corp. and Sony Corp. late Monday announced the world's first 65-nm CMOS process technology for embedded memories. The process technology will enable single-chip devices, said to be one-fourth the size of current embedded chips in the market. The process also enables a 30-nm transistor with the world's fastest switching speeds, as well as the world's smallest cell for embedded DRAM and SRAM. Toshiba and Sony have utilized 65-nm process to fabricate an embedded DRAM with a cell size of 0.11um2, which will enable a 256-megabit memory to be integrated on a single chip. It also fabricated the world's smallest embedded SRAM cell of only 0.6um2. The technology will bring the market towards what the companies call “ubiquitous computing,” that is, total connectivity at all times, according to Toshiba and Sony. The new process technology is the result of a joint developm ent of 90- and 65-nm CMOS processes, which was initiated in May 2001 (see May 18, 2001 story ). Full details will be presented at the International Electron Devices Meeting (IEDM) in San Francisco from Dec. 9-11. In a release issued late Monday, the companies described some of the details of the process, including the development of a high-performance transistor with a 30-nm gate length. Fabricated with 193-nm lithography tools and phase-shift photomasks, the transistor is said to have switching speeds of 0.72-ps for NMOSFET and 1.41-ps for PMOSFET at 0.85-Volt (Ioff=100nA/um). The transistor makes use of a nitrogen concentration plasma nitrided, oxide-gate dielectrics to suppress gate leakage current. This optimization reduces leakage current approximately 50 times more efficiently than conventional silicon dioxide film and allows formation of an oxide with an effective thickness of only 1-nm. To reduce wiring propagat ion delay and power dissipation, a low-k dielectric material is adopted. The target effective dielectric constant of the interlayer dielectric is around 2.7.
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related News
- IBM, Sony, Sony Computer Entertainment Inc. and Toshiba Unveil Cell Processor; First Details of Multicore Chip Comprising Power Architecture and Synergistic Processors
- IBM, Sony, Sony Computer Entertainment Inc., and Toshiba Unveil Details of the Cell Microprocessor
- Toshiba, Sony and NEC Electronics Unveil Mass Production Platform Technology for 45nm Generation High Performance System LSI
- Sony and Toshiba Set to Increase Chip Spending in 2013 as They Strive to Recover
Latest News
- LTSCT and Andes Technology Sign Strategic IP Licensing Master Agreement to accelerate RISC-V Based Advanced Semiconductor Solutions
- Global Semiconductor Sales Increase 29.8% Year-to-Year in November
- BAE Systems Licenses Time Sensitive Networking (TSN) Ethernet IP Cores from CAST
- HBM4 Mass Production Delayed to End of 1Q26 By Spec Upgrades and Nvidia Strategy Adjustments
- ASICLAND Secures USD 17.6 Million Storage Controller Mass Production Contract