sureCore now licensing its CryoMem range of IP for Quantum Computing
Sheffield, UK - November 26, 2024 -- sureCore, the memory specialist, has announced that it is now licensing its CryoMem™ suite of Memory IP that is designed for use at the extremely low temperatures required for Quantum Computing (QC) applications. This is as a result of an Innovate UK-funded consortium to develop cryo-tolerant semiconductor IP. The aim of the project was to develop and prove a range of foundation IP that can be licenced to designers allowing them to create their own custom Cryo-CMOS SoC solutions. This will help accelerate QC scaling by enabling the migration of the control electronics into the cryostat to be close to the qubits.
Paul Wells, sureCore’s CEO, said, “We have successfully tested 180nm sample chips at 77K so we can now start licencing this IP and excitingly, we are also in the middle of evaluating 22FDX demonstrator IP and the plan is to make these available for licencing shortly. Every potential customer who is interested in licensing IP always wants to know if it is silicon proven and can they have an evaluation report. It’s great to be able to say yes, and, not only that, but we can also provide you with a full evaluation board.
“We have just closed a funding round, part of which will enable us to develop this rapidly growing sector of our business. Our success with proven Cryo-CMOS is really going to help accelerate the growth of the QC community by unleashing the power of the fabless business model. The availability of this key enabling Cryo IP which, to date, has been the preserve of the Tier-1 players, will help level the playing field for start-ups struggling to commercialise their novel qubit technologies.”
Project Background
sureCore has exploited its state-of-the-art, ultra-low power memory design skills to create embedded Static Random Access Memory (SRAM), Register Files & Contact Programmable ROM, all key building blocks for any digital sub-system, that is capable of operating from 77K (-196°C) down to the near absolute zero temperatures needed by Quantum Computers (QCs). In addition, both standard cell and IO cell libraries have been re-characterised for operation at cryogenic temperatures thereby enabling an industry standard RTL to GDSII physical design flow to be readily adopted.
A key barrier to QC scaling is being able to collocate ever increasingly complex control electronics close to the qubits that must be housed at cryogenic temperatures in the cryostat. In doing so, it is essential that the control chip power consumption is kept as low as possible to ensure that excess heat is kept to a minimum so it does not cause additional thermal load on the cryostat. Here, sureCore’s low power design expertise proved pivotal.
Current QC designs have the control electronics located outside the cryostat as modern semiconductor technology is only qualified to work down to -40°C. As the temperature is reduced close to absolute zero the operating characteristics of the transistors change markedly. Measuring, understanding and modelling this behavioural change over the past months showcases the potential to build interface chips that can control and monitor qubits at cryogenic temperatures.
At the moment, expensive bulky cabling connects room temperature control electronics to the qubits housed in the cryostat. Enabling QC developers to be able to exploit the fabless design paradigm and create their own custom cryogenic control SoCs, which can be housed with the qubits inside the cryostat, is a game-changer that will rapidly enable QC scaling. Immediate benefits include cost, size and, most importantly, latency reduction. The next step will be characterising the demonstrator chip at cryo temperatures to further refine and validate the models to help improve the performance.
The IUK-funded consortium is a complete ecosystem including academic and industrial partners with the expertise and core competencies required to develop cryo-tolerant semiconductor IP. The aim of the project was to develop and prove a suite of foundation IP that can be licenced to designers allowing them to create their own Cryo-CMOS SoC solutions. By doing so their competitive edge in the Quantum Computing space will be dramatically accelerated.
sureCore™ -- When low power is paramount™
sureCore, the ultra-low power, embedded memory specialist, is the low-power innovator who empowers the IC design community to meet aggressive power budgets through a portfolio of ultra-low power memory design services and standard IP products. sureCore’s low-power engineering methodologies and design flows meet the most exacting memory requirements with a comprehensive product and design services portfolio that create clear market differentiation for customers. The company’s low-power product line encompasses a range of close to near-threshold, silicon proven, process-independent SRAM IP.
Related Semiconductor IP
- CryoCMOS IP to Unlock Quantum Computing
- Memory Compiler
- Low Power Memory IP
- ARC EM9D 32-bit DSP Enhanced Processor core based on the ARCv2DSP ISA with CCM and XY Memory
- ARC EM11D Enhanced 32-bit processor core, ARCv2DSP ISA with Cache and XY Memory
Related News
- sureCore-led consortium wins £6.5M Innovate UK grant to develop cryogenic CMOS IP to accelerate Quantum Computing scalability
- Siemens collaborates with sureCore and Semiwise to pioneer quantum computing ready cryogenic semiconductor designs
- Semiwise, sureCore, and Cadence Showcase Breakthrough in Cryogenic CMOS Circuit Development for Quantum Computing and Energy-Efficient Data Centers
- sureCore announces development of cryo-CMOS IP that will unlock Quantum Computing's potential
Latest News
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura’s Cyberthreat Intelligence Tool
- Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors
- CAST to Enter the Post-Quantum Cryptography Era with New KiviPQC-KEM IP Core
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology
- Arm Announces Appointment of Eric Hayes as Executive Vice President, Operations