Virtual Sequences in UVM: Why, How?
In my previous blog post, I discussed guidelines to create reusable sequences. Continuing on this thread, here I am going to talk about virtual sequences and the virtual sequencer. Common questions I hear from users include: why do we need a virtual sequence? How can we use it effectively?
Most UVM testbenches are composed of reusable verification components unless we are working on block-level verification of a simple protocol like MIPI-CSI. Consider a scenario of verifying a simple protocol; In this case, we can live with just one sequencer sending the stimulus to the driver. The top-level test will use this sequencer to process the sequences (as described in the previous blog post). Here we may not need a virtual sequence (or a virtual sequencer).
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- VIP Architecture: Why Native SystemVerilog and UVM?
- Reusable Sequences in UVM
- UVM Sequences Tutorial
- Why and How to Customize a Processor
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power