The High-Speed Virtual Highway
By now it’s safe to say that complex, high-speed design is no longer a riddle….at least in theory.
We all know the end game. In its most fundamental form, isn’t it really a designer’s negotiation and compromise with the end user that comes down to action and reaction? We know users demand more and more applications to run simultaneously on their smart devices. We know that the underlying SoC in every device must sufficiently accommodate multiple data streams for each unique application. This is driving key architectural decisions for multi-core, multi-processor SoCs. Given that, how do we limit the amount of ‘compromise’ by the designer and give the customer more of that they want?
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related Blogs
- Using Scoreboards and Virtual Platforms for Software Verification
- Creating the Zynq Virtual Platform, Including Errata
- The Zynq Virtual Platform: Not Just for Pre-Silicon
- Using Physical USB Devices with the Xilinx Zynq-7000 Virtual Platform
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security