The High-Speed Virtual Highway
By now it’s safe to say that complex, high-speed design is no longer a riddle….at least in theory.
We all know the end game. In its most fundamental form, isn’t it really a designer’s negotiation and compromise with the end user that comes down to action and reaction? We know users demand more and more applications to run simultaneously on their smart devices. We know that the underlying SoC in every device must sufficiently accommodate multiple data streams for each unique application. This is driving key architectural decisions for multi-core, multi-processor SoCs. Given that, how do we limit the amount of ‘compromise’ by the designer and give the customer more of that they want?
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Using Scoreboards and Virtual Platforms for Software Verification
- Creating the Zynq Virtual Platform, Including Errata
- The Zynq Virtual Platform: Not Just for Pre-Silicon
- Using Physical USB Devices with the Xilinx Zynq-7000 Virtual Platform
Latest Blogs
- FiRa 3.0 Use Cases: Expanding the Future of UWB Technology
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits