Developing the Skill Set Required for SystemC TLM-Based Hardware Design and Verification
I've written a lot about the benefits of moving hardware design and verification up in abstraction from RTL to SystemC with transaction-level models (TLM). We have seen many customers speed their overall design and verification turnaround by 2x. A recent article described Fujitsu Semiconductor's experience -- 35% better performance, 35% smaller area, 51% less power and faster turnaround time.
The benefits of moving up in abstraction are summarized by the following graph, which shows the leaps in productivity for every leap in abstraction:
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Software-Driven Hardware Verification
- "Great" Hardware Design in a Wireless World
- Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA