Developing the Skill Set Required for SystemC TLM-Based Hardware Design and Verification
I've written a lot about the benefits of moving hardware design and verification up in abstraction from RTL to SystemC with transaction-level models (TLM). We have seen many customers speed their overall design and verification turnaround by 2x. A recent article described Fujitsu Semiconductor's experience -- 35% better performance, 35% smaller area, 51% less power and faster turnaround time.
The benefits of moving up in abstraction are summarized by the following graph, which shows the leaps in productivity for every leap in abstraction:
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Software-Driven Hardware Verification
- "Great" Hardware Design in a Wireless World
- Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power