Developing the Skill Set Required for SystemC TLM-Based Hardware Design and Verification
I've written a lot about the benefits of moving hardware design and verification up in abstraction from RTL to SystemC with transaction-level models (TLM). We have seen many customers speed their overall design and verification turnaround by 2x. A recent article described Fujitsu Semiconductor's experience -- 35% better performance, 35% smaller area, 51% less power and faster turnaround time.
The benefits of moving up in abstraction are summarized by the following graph, which shows the leaps in productivity for every leap in abstraction:
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Software-Driven Hardware Verification
- "Great" Hardware Design in a Wireless World
- Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview