Software-Driven Hardware Verification
There is a transition going on in the system and semiconductor worlds. Some system companies are starting to do their own semiconductor design. In fact, it is notable that all the leading smartphone vendors design their own application processors, for example. At the same time, semiconductor companies have to create a large part of the software stack for each SoC since the software and silicon are intimately related. Both these trends mean that software and SoCs need to be designed in parallel. This is not the only change going on. There is more parallelism in everything from the inter-relation of thermal and power, packaging and EMIR analysis, system architecture and test strategy, and more. This highly concurrent design process is what we at Cadence call System Design Enablement or SDE.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Execute Your Hardware Verification Campaign in the Cloud - a Verification Engineer's Perspective
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- Hardware-Assisted Verification: The Real Story Behind Capacity
- Software is from Mars, hardware is from Pluto
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform