Software-Driven Hardware Verification
There is a transition going on in the system and semiconductor worlds. Some system companies are starting to do their own semiconductor design. In fact, it is notable that all the leading smartphone vendors design their own application processors, for example. At the same time, semiconductor companies have to create a large part of the software stack for each SoC since the software and silicon are intimately related. Both these trends mean that software and SoCs need to be designed in parallel. This is not the only change going on. There is more parallelism in everything from the inter-relation of thermal and power, packaging and EMIR analysis, system architecture and test strategy, and more. This highly concurrent design process is what we at Cadence call System Design Enablement or SDE.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Execute Your Hardware Verification Campaign in the Cloud - a Verification Engineer's Perspective
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- Hardware-Assisted Verification: The Real Story Behind Capacity
- Software is from Mars, hardware is from Pluto
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power