Software-Driven Hardware Verification
There is a transition going on in the system and semiconductor worlds. Some system companies are starting to do their own semiconductor design. In fact, it is notable that all the leading smartphone vendors design their own application processors, for example. At the same time, semiconductor companies have to create a large part of the software stack for each SoC since the software and silicon are intimately related. Both these trends mean that software and SoCs need to be designed in parallel. This is not the only change going on. There is more parallelism in everything from the inter-relation of thermal and power, packaging and EMIR analysis, system architecture and test strategy, and more. This highly concurrent design process is what we at Cadence call System Design Enablement or SDE.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
Related Blogs
- Execute Your Hardware Verification Campaign in the Cloud - a Verification Engineer's Perspective
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- Hardware-Assisted Verification: The Real Story Behind Capacity
- Software is from Mars, hardware is from Pluto
Latest Blogs
- Cadence Powers AI Infra Summit '25: Memory, Interconnect, and Interface Focus
- Integrating TDD Into the Product Development Lifecycle
- The Hidden Threat in Analog IC Migration: Why Electromigration rules can make or break your next tapeout
- MIPI CCI over I3C: Faster Camera Control for SoC Architects
- aTENNuate: Real-Time Audio Denoising