Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
The shift from monolithic to multi-die design is inevitable — but that's not to say it's straightforward. Traditional monolithic design has clear limitations. Diminishing yield and high cost-per-die become issues when a design nears reticle limits. At this point, multi-die integration can break the system into a series of smaller dies and to overcome scale and cost issues of scale.
Hyperscalers and other high-performance computing companies have noted that chiplets enable collaborative design within a multi-die context that delivers cost advantages and "mix-and-match integration” across heterogeneous IP blocks. Unfortunately, the chiplet ecosystem has yet to be completely standardized. Chiplet-based design incurs challenges around packaging, power delivery, verification, timing, floor planning, security, testability, and thermal management.
Together with Alchip Technologies, a high-performance computing and AI ASIC company, Synopsys addresses these issues to deliver the ROI and physical benefits of a multi-die design.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Five Key Techniques to Accelerate Software Bring-Up for Multi-Die Systems
- Addressing Multi-Physics Effects for High-Performing Multi-Die Systems with Integrated Die/Package Co-Design Platform
- Samsung Foundry and Synopsys Accelerate Multi-Die System Design
- How Collaboration Will Accelerate Adoption of Multi-Die Systems
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA