Strengthening the Semiconductor Talent Pipeline Through Workforce Development Programs
What will it take to nurture the next generation of engineers?
This is one of the big challenges for the semiconductor industry, as a looming talent shortage converges with increasing demands for more complex chips. According to a study by the Semiconductor Industry Association (SIA) and Oxford Economics, there’s a risk that roughly 67,000 jobs for technicians, computer scientists, and engineers will go unfilled by 2030 in the U.S. alone. Meanwhile, the nation’s CHIPS and Science Act invests $52 billion in the country’s industry over five years, creating new opportunities while also galvanizing workforce development initiatives with universities and businesses.
As chip manufacturing fabs are built in the U.S., skilled technicians will be needed to bring them online and to make them operational and profitable. And as AI and machine learning become more ubiquitous, engineering expertise will be needed to design the chips and write the code that make these technologies useful.
Indeed, it will take collaboration across multiple sectors—including government, academia, and the industry (as well as across the electronics value chain)—to bring new engineering talent on board. Mentoring, hands-on lab experience, internships, and college degree programs all play pivotal roles. Read on for a deeper look at what’s needed to strengthen the semiconductor talent pipeline.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Integrating TDD Into the Product Development Lifecycle
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- The Shift-Left Approach to Software Development
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production