Shattering the neural network memory wall with Checkmate
A recent paper published on arXiv by a team of UC Berkeley researchers observes that neural networks are increasingly bottlenecked and constrained by the limited capacity of on-device GPU memory. Indeed, deep learning is constantly testing the limits of memory capacity on neural network accelerators as neural networks train with high-resolution images, 3D point-clouds and long Natural Language Processing (NLP) sequence data.
“In these applications, GPU memory usage is dominated by the intermediate activation tensors needed for backpropagation. The limited availability of high bandwidth on-device memory creates a memory wall that stifles exploration of novel architectures,” the researchers explain. “One of the main challenges when training large neural networks is the limited capacity of high-bandwidth memory on accelerators such as GPUs and TPUs. Critically, the bottleneck for state-of-the-art model development is now memory rather than data and compute availability and we expect this trend to worsen in the near future.”
As the researchers point out, some initiatives to address this bottleneck focus on dropping activations as a strategy to scale to larger neural networks under memory constraints. However, these heuristics assume uniform per-layer costs and are limited to simple architectures with linear graphs. As such, the UC Berkeley team uses off-the-shelf numerical solvers to formulate optimal rematerialization strategies for arbitrary deep neural networks in TensorFlow with non-uniform computation and memory costs. In addition, the UC Berkeley team demonstrates how optimal rematerialization enables larger batch sizes and substantially reduced memory usage – with minimal computational overhead across a range of image classification and semantic segmentation architectures.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Take your neural networks to the next level with Arm's Machine Learning Inference Advisor
- Navigating Integration Challenges for the RISC-V Ecosystem with Networks-on-Chips (NoCs)
- Will your multicore SoC hit the memory wall? Will the memory wall hit your SoC? Does it matter?
- Synopsys Fields Processor Core for Neural Network Computer Vision Applications
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview