Will your multicore SoC hit the memory wall? Will the memory wall hit your SoC? Does it matter?
Multicore SoC and processor designs were our solution to the death of Dennard Scaling when IC process geometries dropped below 90nm, when processor speeds hit 3GHz, and when processor power consumption went off the charts. Since 2004, we’ve transformed Moore’s Law into a processor-core replicator, spending transistors on more processor cores rather than bigger, smarter, faster processor cores. But there’s a storm brewing once more, heralded by the dismal utilization of supercomputers that run hundreds to hundreds of thousands of processors in parallel. Currently, per-core processor utilization in supercomputers is less than 10% and falling due to memory and I/O limitations. If we don’t want the same thing to happen to our multicore SoC designs, we need to find a new path that allows processor utilization to scale along with processor core count.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Makimoto's Wave Revisited for Multicore SoC Design
- How to Build a Deadlock-Free Multi-cores SoC?
- Intel’s Atom-based Tunnel Creek SOC with integrated PCIe interface opens new era for embedded developers
- Bringing MEMS and asynchronous logic into an SoC design flow
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA