RISC-V to the Core: New Horizons
The increasing popularity of the RISC-V ISA within the semiconductor industry is a boon for innovation. It provides designers with unprecedented flexibility and will slowly but steadily challenge and transform the current landscape of embedded systems. In the past, Renesas has embraced RISC-V technology introducing 32-bit ASSP devices for voice-control and motor-control built on CPU cores developed by Andes Technology Corp.
The exciting next step is the availability of the first, in-house engineered, CPU core. A high-level block diagram of the CPU is shown below:
But what‘s so special about it? First, this CPU is suitable for many different application contexts. It can be used as main CPU or to manage an on-chip subsystem or even to be embedded in a specialized ASSP device. Clearly it is very flexible. Second, the implementation is very efficient in terms of silicon area, which helps reduce operating current and leakage current during standby time, besides the obvious effect of smaller cost impact. Third, despite targeting small embedded systems, it provides a surprisingly high level of computational throughput to fulfill the increasingly demanding performance requirement of even deeply embedded applications.
Related Semiconductor IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
- 32 Bit - Embedded RISC-V Processor Core
Related Blogs
- Ambient IoT: 5 Ways Packetcraft's Software is Optimized to Enable the New Class of Connectivity
- SiFive Upgrades Automotive Security for the RISC-V Ecosystem with New ISO/SAE 21434 Certification
- Imec and Synopsys Lower the Barriers to 2nm Technology With New Pathfinding Design Kit
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?