Record FPGA data during 1 hour - really.
As ASIC, SoC and FPGA engineers, we are use to watching the operation of our designs based on single limited snapshots. RTL simulations, for instance, provide bit-level details during execution times that span over a few (milli)seconds at best. Consequently, it may not be possible to see events that happen over long times as a single coherent capture.
In this blog post, I have wanted to show what can be done in a real case with EXOSTIV. The design that runs from a FPGA board is a full system on-chip that features a Gbit Ethernet connection. The board is connected to our company network – and I have set up EXOSTIV to trigger and record the Ethernet traffic during 1 full hour. Yes, we used EXOSTIV as an Ethernet sniffer, that works from inside the FPGA – providing a ‘decoded view’ of the traffic after it has entered the FPGA Gbit Ethernet IP.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Part 1: Fast Access to Accelerators: Enabling Optimized Data Transfer with RISC-V
- Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 1
- Need really big FPGAs? Xilinx will be taking the "3D" route for initial Virtex 7 parts
- Altera shows multi-foundry directions for Generation 10
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production