MIPI UniPro: Major Differentiating Features, Benefits and Verification Challenges
MIPI UniPro is a recent addition to mobile chip-to-chip interconnect technology. It’s got many useful features to meet the requirements of mobile applications. That’s perhaps why Google’s Project Ara has selected MIPI UniPro and MIPI M-PHY as its backbone interconnects.
In this blog post, we describe three differentiating features, benefits and their verification challenges. All the discussion is referenced to MIPI UniPro 1.6.
- Achieving Low power consumption through Power mode changes and hibernation
- Flexibility in chip-to-chip lane routing through Physical Lane mapping
- Enhanced QoS through CPort arbitration & Data link layer pre-emption
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Interface Standards Table - MIPI HSI, HSIC, UniPro, UniPort, LLI, C2C
- MIPI UniPro through eyes of PCI Express
- MIPI UniPro: Comprehensive Verification Checklist
- MIPI Unipro Transport Layer (L4) - An Introduction
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview