LPDDR4: What Makes It Faster and Reduces Power Consumption
DRAM memories are the ‘heart’ of any computational device, e.g. smart phones, laptops, servers etc. LPDDR4 was mainly designed to increase memory speed and efficiency for mobile computing devices such as smartphones, tablets, and ultra-thin notebooks. It supports speeds up to 4267Mbps (double the speed of LPDDR3) and 1.1 V input/output buffer power, along with many other improvements compared to its predecessor (LPDDR3/LPDDR2). Below is a comparison of key features between all the three generations of LPDDR.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- 3 steps to shrinking your code size, your costs, and your power consumption
- Breaking the Silence: What Is SoundWire‑I3S and Why It Matters
- What does Cadence mean when it calls System Realization a "holistic" approach to IC design?
- What will it take for FPGAs to become as ubiquitous as processors?
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
