3 steps to shrinking your code size, your costs, and your power consumption
RISC-V is a powerful instruction set that is constantly evolving. One of the recent evolutions relates to code size reduction. Last year, the RISC-V Zc extensions were ratified. The team at Codasip led this work, and as I have been closely involved, I would like to explain the possibilities of these extensions.
Reducing the code size of your core can have benefits you might not have considered:
Lower system cost
In small embedded systems, the processor’s size is less critical than the size of the Boot ROM and the external flash memory. So, what if you increase the processor size by 1-3% to add functionality for code size reduction? As a result, the code size can shrink by up to 20%. You can fit your software into much smaller ROMs and flash memory, reducing the total system cost despite a modest increase in processor size and power consumption.
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- Compact Embedded RISC-V Processor
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
Related Blogs
- Three Smart Steps to Quickly Test a Register Map for Your Entire SoC
- How to Secure Your Computing System's Power-Up Process with Secure Boot?
- How to Augment SoC Development to Conquer Your Design Hurdles
- Formal verification best practices to reach your targets
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
