3 steps to shrinking your code size, your costs, and your power consumption
RISC-V is a powerful instruction set that is constantly evolving. One of the recent evolutions relates to code size reduction. Last year, the RISC-V Zc extensions were ratified. The team at Codasip led this work, and as I have been closely involved, I would like to explain the possibilities of these extensions.
Reducing the code size of your core can have benefits you might not have considered:
Lower system cost
In small embedded systems, the processor’s size is less critical than the size of the Boot ROM and the external flash memory. So, what if you increase the processor size by 1-3% to add functionality for code size reduction? As a result, the code size can shrink by up to 20%. You can fit your software into much smaller ROMs and flash memory, reducing the total system cost despite a modest increase in processor size and power consumption.
To read the full article, click here
Related Semiconductor IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
Related Blogs
- Three Smart Steps to Quickly Test a Register Map for Your Entire SoC
- How to Secure Your Computing System's Power-Up Process with Secure Boot?
- How to Augment SoC Development to Conquer Your Design Hurdles
- Formal verification best practices to reach your targets
Latest Blogs
- A Comparison on Different AMBA 5 CHI Verification IPs
- Cadence Recognized as TSMC OIP Partner of the Year at 2025 OIP Ecosystem Forum
- Accelerating Development Cycles and Scalable, High-Performance On-Device AI with New Arm Lumex CSS Platform
- Desktop-Quality Ray-Traced Gaming and Intelligent AI Performance on Mobile with New Arm Mali G1-Ultra GPU
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet