Pushing to the Limits: Understanding Lane Margining for PCIe
PCI-SIG has built its reputation on delivering high quality PCI Express® (PCIe) specifications that have doubled bandwidth on average every three years, while maintaining full backwards compatibility with prior generations. This is no easy task, and as an organization, we continue to innovate in order to meet the performance requirements of our members and the industry within the power, cost, and high volume manufacturing constraints.
When we set out to design the PCIe 4.0 specification – which doubled bandwidth from 8 GT/s to 16 GT/s per Lane while maintaining backwards compatibility – we realized that system designers would need to know how much signaling margin was actually available in their design in order to squeeze out full 16GT/s performance while taking into account channel loss limits. Of course, while robust high-speed signaling simulations would be required to ensure proper designs, we felt that a test which could be run in the actual physical system would provide confidence on the reliability of the system.
To read the full article, click here
Related Semiconductor IP
- AXI Bridge with DMA for PCIe IP Core
- PCIe Gen 7 Verification IP
- PCIe Gen 6 Phy
- PCIe Gen 6 controller IP
- PCIe GEN6 PHY IP
Related Blogs
- Demystifying PCIe Lane Margining Technology
- PCIe Lane Margining - What changed from Gen4 to Gen6?
- Building Verification Infrastructure for Complex PCIe Verification
- How PCIe 7.0 is Boosting Bandwidth for AI Chips
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility