Pushing to the Limits: Understanding Lane Margining for PCIe
PCI-SIG has built its reputation on delivering high quality PCI Express® (PCIe) specifications that have doubled bandwidth on average every three years, while maintaining full backwards compatibility with prior generations. This is no easy task, and as an organization, we continue to innovate in order to meet the performance requirements of our members and the industry within the power, cost, and high volume manufacturing constraints.
When we set out to design the PCIe 4.0 specification – which doubled bandwidth from 8 GT/s to 16 GT/s per Lane while maintaining backwards compatibility – we realized that system designers would need to know how much signaling margin was actually available in their design in order to squeeze out full 16GT/s performance while taking into account channel loss limits. Of course, while robust high-speed signaling simulations would be required to ensure proper designs, we felt that a test which could be run in the actual physical system would provide confidence on the reliability of the system.
To read the full article, click here
Related Semiconductor IP
- AXI Bridge with DMA for PCIe IP Core
- PCIe Gen 7 Verification IP
- PCIe Gen 6 Phy
- PCIe Gen 6 controller IP
- PCIe GEN6 PHY IP
Related Blogs
- Demystifying PCIe Lane Margining Technology
- PCIe Lane Margining - What changed from Gen4 to Gen6?
- How PCIe 7.0 is Boosting Bandwidth for AI Chips
- Industry's First Verification IP for PCIe 7.0
Latest Blogs
- Post-quantum security in platform management: PQShield is ready for SPDM 1.4
- Unleash Real-Time LiDAR Intelligence with Akida On-Chip AI
- Ceva Advancing Real-Time AI with Transformers and Intelligent Quantization
- X100 - Securing the System - RISC-V AI at the Edge
- Why Anti-tamper Sensors Matter: Agile Analog and Rambus Deliver Comprehensive Security Solution