How complex is your chip design?
When planning new IC design projects, such as SoCs or complex analog or RF chips, R&D organizations that have a firm grasp on the complexity of implementing the design wield a powerful competitive advantage. Complexity is a measure of engineering difficulty and provides the foundation for reliably estimating engineering resource requirements and development cycle time for projects, which is the essence of good project planning. Can anyone disagree that consistently reliable project plans, which means projects finish on-time and within budget, translate to higher revenue and profits? But how does one get an accurate, quantitative calculation of design complexity?
To read the full article, click here
Related Semiconductor IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
Related Blogs
- How AI Will Change Chip Design
- AI Is Driving a New Frontier in Chip Design
- How Is AI Driving the Next Innovation Wave for Electronic Design?
- How Chip Design Was Revolutionized by AI-Enhanced Game Play
Latest Blogs
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
- Smarter ASICs and SoCs: Unlocking Real-World Connectivity with eFPGA and Data Converters
- RISC-V Takes First Step Toward International Standardization as ISO/IEC JTC1 Grants PAS Submitter Status
- Running Optimized PyTorch Models on Cadence DSPs with ExecuTorch