How complex is your chip design?
When planning new IC design projects, such as SoCs or complex analog or RF chips, R&D organizations that have a firm grasp on the complexity of implementing the design wield a powerful competitive advantage. Complexity is a measure of engineering difficulty and provides the foundation for reliably estimating engineering resource requirements and development cycle time for projects, which is the essence of good project planning. Can anyone disagree that consistently reliable project plans, which means projects finish on-time and within budget, translate to higher revenue and profits? But how does one get an accurate, quantitative calculation of design complexity?
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Blogs
- How AI Will Change Chip Design
- AI Is Driving a New Frontier in Chip Design
- How Is AI Driving the Next Innovation Wave for Electronic Design?
- How Chip Design Was Revolutionized by AI-Enhanced Game Play
Latest Blogs
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Pushing the Boundaries of Memory: What’s New with Weebit and AI
- Root of Trust: A Security Essential for Cyber Defense
- Evolution of AMBA AXI Protocol: An Introduction to the Issue L Update
- An Introduction to AMBA CHI Chip-to-Chip (C2C) Protocol