How complex is your chip design?
When planning new IC design projects, such as SoCs or complex analog or RF chips, R&D organizations that have a firm grasp on the complexity of implementing the design wield a powerful competitive advantage. Complexity is a measure of engineering difficulty and provides the foundation for reliably estimating engineering resource requirements and development cycle time for projects, which is the essence of good project planning. Can anyone disagree that consistently reliable project plans, which means projects finish on-time and within budget, translate to higher revenue and profits? But how does one get an accurate, quantitative calculation of design complexity?
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Blogs
- How AI Will Change Chip Design
- AI Is Driving a New Frontier in Chip Design
- How Is AI Driving the Next Innovation Wave for Electronic Design?
- How Chip Design Was Revolutionized by AI-Enhanced Game Play
Latest Blogs
- A Low-Leakage Digital Foundation for SkyWater 90nm SoCs: Introducing Certus’ Standard Cell Library
- FPGAs vs. eFPGAs: Understanding the Key Differences
- UCIe D2D Adapter Explained: Architecture, Flit Mapping, Reliability, and Protocol Multiplexing
- RT-Europa: The Foundation for RISC-V Automotive Real-Time Computing
- Arm Flexible Access broadens its scope to help more companies build silicon faster