AI Is Driving a New Frontier in Chip Design
If only the harried engineer were simply a meme. But the fact is, engineers consistently report being under pressure to do more with fewer resources. Engineering talent shortages continue making headlines, and the job is getting increasingly complex and bigger in scope. While the slowing of Moore’s law is creating limitations on some semiconductor advancements, our digital world continues demanding much more from our electronics.
How can engineers deliver the complex silicon chips today required to tackle the challenges of tomorrow?
Now, there’s a proven solution that enhances engineering productivity and silicon quality of results—even making possible what has previously been impossible to accomplish. All of this comes, incidentally, from one of the very technologies that is driving greater chip complexity: artificial intelligence (AI).
Engineering ingenuity has led to advancements like AI-powered chatbots, surgery-performing robotics, and self-driving cars. It has also produced solutions that offload repetitive chip design, verification, and testing tasks, allowing engineers to focus on what they do best: innovate.
With the award-winning Synopsys DSO.ai™ AI application for chip design leading the way, Synopsys has unveiled the industry’s first full-stack, AI-driven electronic design automation (EDA) design suite, with solutions for functional verification (Synopsys VSO.ai) and silicon test (Synopsys TSO.ai) now available and more capabilities coming down the road. Customers with early access to the Synopsys.ai technology are reporting impressive results, from 10x improvement in reducing functional coverage holes to up to 30% increase in IP verification productivity. Meanwhile, DSO.ai has recently notched its first 100 production tape-outs, a significant milestone that marks AI’s ascent into the semiconductor mainstream.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Physical AI at the Edge: A New Chapter in Device Intelligence
- Charting a Productive New Course for AI in Chip Design
- How Is AI Driving the Next Innovation Wave for Electronic Design?
- What are AI Chips? A Comprehensive Guide to AI Chip Design
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform