How Will High-Level Synthesis Affect the Make vs. Buy vs. Re-use Decision?
During the planning phase for SoC designs, teams have to choose whether to "make or buy" the pieces of IP that will compose the SoC. The drivers of this decision are well-chronicled in a recent article by Ann Steffora Mutchler, appropriately titled "Make vs. Buy". I won't re-hash it here, though I might add one choice: reuse. Except for startups, most chip designs have IP internally that they can re-use from previous projects. The ability to re-use blocks is often lacking, as new process nodes or applications have different requirements, or perhaps the block was not designed for re-use in the first place. I wrote a post a couple months ago that detailed why designing with SystemC TLM enables more re-use. But that post did not venture into "what could this mean?"
Let's re-visit each piece of the "make vs. re-use vs. buy" decision and speculate on the impact on each of moving to higher-level abstraction design:
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Breaking Down the "Make vs. Buy" Barriers for IP
- Xilinx Buys AutoESL, Securing High-Level Synthesis Capabilities
- Intel vs ARM - Did the Embedded Systems Conference India Shed Light on the Battle?
- The Semiconductor World vs TSMC vs EDA
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?