How Will High-Level Synthesis Affect the Make vs. Buy vs. Re-use Decision?
During the planning phase for SoC designs, teams have to choose whether to "make or buy" the pieces of IP that will compose the SoC. The drivers of this decision are well-chronicled in a recent article by Ann Steffora Mutchler, appropriately titled "Make vs. Buy". I won't re-hash it here, though I might add one choice: reuse. Except for startups, most chip designs have IP internally that they can re-use from previous projects. The ability to re-use blocks is often lacking, as new process nodes or applications have different requirements, or perhaps the block was not designed for re-use in the first place. I wrote a post a couple months ago that detailed why designing with SystemC TLM enables more re-use. But that post did not venture into "what could this mean?"
Let's re-visit each piece of the "make vs. re-use vs. buy" decision and speculate on the impact on each of moving to higher-level abstraction design:
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related Blogs
- Breaking Down the "Make vs. Buy" Barriers for IP
- Xilinx Buys AutoESL, Securing High-Level Synthesis Capabilities
- Intel vs ARM - Did the Embedded Systems Conference India Shed Light on the Battle?
- The Semiconductor World vs TSMC vs EDA
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security