FPGA Prototyping: From Homebrew to Integrated Solutions
Years ago, when FPGA prototyping started, there were no solutions that you could go out and buy and everything was created as a one-off: buy some FPGAs or an FPGA-based board, and put it all together. It was a lot of effort, nobody really knew in advance how long it would take, there was very limited visibility for debug and the whole thing was basically unsupportable. There is more discipline these days but even so, roughly half of all FPGA prototyping is done in a proprietary way that doesn't scale as designs get larger and lacks more and more desirable features. The other half of the market uses an integrated solution that ties together FPGA-based hardware, the software for getting the design up and running, debug and daughter boards for hardware interfaces.
Last week I talked to Johannes Stahl of Synopsys about the new solution that they are announcing today.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related Blogs
- Do we need a new FPGA structure for prototyping?
- Virtual Platforms plus FPGA Prototyping, the Perfect Mix
- FPGA Prototyping of System-on-Chip (SoC) Designs
- Five Challenges to FPGA-Based Prototyping
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security